

COURSE OUTLINE
IT TRAINING

 1300 796 006  info@nhaustralia.com.au  www.nhaustralia.com.au

 Advanced Java 8 Using Eclipse

Duration: 5 days

Overview:

This course teaches how to
develop advanced Java
applications using Eclipse. The
advanced features of Java
that developers may be using
in many different types of
programs are covered. This
course also covers many of
the advanced features added
in Java 7 and Java 8.

Target Audience:

This course is intended for
programmers who are familiar
with Java and want to learn
about the advanced features
of Java.

Pre-requisites:

Before attending this course,
students must have a good
understanding of object-
oriented programming using
Java.

 MODULE 1: Java Logging API

 Java Logging API
 Control Flow of Logging
 Logging Levels
 Logging Handlers
 Loggers
 Logging Example
 Logging Formatters & Log Manager
 Logging Configuration File
 Example Logging Configuration File
 Logging Filters

MODULE 2: JDBC

 Overview
 Types of Drivers
 Making a Connection
 Statements
 Execute, Update and ResultSets
 JDBC and try-with-resources
 SQLException
 Prepared Statements
 Stored Procedures
 Transactions
 Connection Pooling

MODULE 3: Overview of Java
Persistence API

 Data Persistence
 Java Persistence API 2.0
 Entities
 Session EJB vs JPA Entities
 Entities
 Persisting and Retrieving Data
 Accessing Entities
 EntityManager & Persistence Unit
 Persistence Context
 Entities - Example
 persistence.xml – Hibernate Provider
 persistence.xml – Open JPA Provider
 persistence.xml - Toplink
 Entity Instance Lifecycle
 Creating EntityManager in Session EJB
 Creating EntityManager in a Plain Java

Class
 Working With the EntityManager

Interface
 Transaction Basics
 Summary

MODULE 4: The Java
Architecture for XML Binding
(JAXB)

MODULE 5: Networking

 Overview
 URL Connections
 Browser Example
 InetAddress
 Socket Classes
 Simple Clients and Servers
 Simple Clients and Servers (cont.)
 Multithreaded Servers
 UDP Sockets

 MODULE 6:
Internationalisation

 Internationalization
 Adoption Stages
 Internationalization
 Locale
 Dates
 User Interface design
 Resource Bundles
 Other Local Customs
 How Java Represents Characters
 Text Files
 Text files
 Summary

MODULE 7: Using the
Date/Time API

 Introduction to the Date/Time API
 Create Date Events
 Create Time Events
 Working with Date and Time Together
 Working with Time Zones
 Working with Durations

MODULE 8: Annotations

 The Annotations Model
 Annotation Types and Annotations
 Built-In Annotations
 JSR 250 Common Annotations
 JSR 250 Common Annotations

Example
 Meta-Annotations
 Annotations vs. Descriptors (XML)
 Aspect-Oriented Programming (AOP)
 Aspect-Oriented Programming and

Java
 @AspectJ Annotations Support

MODULE 9: Security

 Overview of JDK Security Features
 Java Cryptography Architecture (JCA)
 Java Cryptography Extension
 Using the MessageDigest Class
 Example of Using the MessageDigest

Class
 Using the Signature Class
 Java Security Architecture
 Security Model – Sandbox
 Security Model – Trusted Signed Code

& Security Policy
 JDK 1.4 Security Enhancement
 Protection Domains and Security

Policies
 ProtectionDomain Class
 Permission Classes
 Using Permission Classes
 Policy Class
 Policy Configuration File
 AccessController Class
 SecurityManager Class
 Using the SecurityManager Class
 Java Authentication and Authorization

Service - JAAS
 JAAS – Common Classes
 JAAS - Authentication
 JAAS – Authentication Configuration
 JAAS - Authorization
 Java Security Tools
 Using Java Security Tools – Code

Signing
 Summary

mailto:info@nhaustralia.com.au

COURSE OUTLINE
IT TRAINING

 1300 796 006  info@nhaustralia.com.au  www.nhaustralia.com.au

MODULE 10: Java NIO and
NIO.2

 NIO and NIO.2 Overview
 The java.nio.file.Path Interface
 Obtaining a Path Instance
 Path Operations
 Converting Paths
 Operations With Two Paths
 Working With Files
 File Attributes
 Working With File Attributes
 FileVisitor API
 Finding Files
 Watching Directories
 WatchService Example
 Buffers
 Channels
 Using Buffers and Channels - Write

Example
 Using Buffers and Channels - Read

Example
 Working With Legacy java.io.File Code
 Summary

MODULE 11: Threads

 Overview of Threads
 Threads in Java Programming
 Write a Runnable Class
 Create Threads
 Another Way of Creating Threads
 Two ways of creating threads
 States in a Thread’s Lifetime
 JVM Scheduler
 Control and Schedule Thread
 Coordinating the Concurrency of Multiple

threads
 Synchronization
 How Does the Object Lock Flag Work
 Using the synchronized keyword
 The Implication of Synchronization
 Example of Synchronization -

Producer/Consumer
 Example of Synchronization – MyStack
 Example of Synchronization – Producer
 Example of Synchronization – Consumer
 Example of Synchronization – SyncTest
 Why Coordination is Required
 Coordinating Thread Cooperation
 wait() and notify()
 Example of Coordination

Producer/Consumer
 Example of Coordination – MyStack
 Results
 Deadlock
 Method References

MODULE 12: Java
Concurrency

 Java Concurrency
 Executor Interface
 Using the Executor
 Callable Interface
 Callable Example
 ExecutorService Interface
 Future Object
 Using Executor, Future and Callable
 Atomic Variables
 Using Atomic Variables
 Summary

MODULE 13: Fork/ Join
Framework

 Fork/Join Introduction
 Fork Join Tasks
 RecursiveTask
 RecursiveTask Example
 RecursiveAction
 ForkJoinPool
 Summary

MODULE 14: Introduction to
Lambda Expressions

 Purpose of Lambda Expressions
 Functional Interfaces
 Comparison to Anonymous Classes
 Syntax

MODULE 15: Collections
Stream API

 Iterating Through a Collection with

forEach
 Stream Interface
 Filtering with Lambda Expressions
 Using the map Method to Extract Data

MODULE 16: Using Built-In
Lambda Types

 Built-in Interfaces of java.util.function

Package
 Determining true or false with a

Predicate
 Processing one Object and Return

Another with Function
 Processing an Object and Return

Nothing with Consumer
 Generating a New Object with Supplier

MODULE 17: Advanced
Functional Programming

 Searching for Data Using Search

Methods
 Sorting a Stream
 Making a Stream Pipeline Execute in

Parallel
 Calculating a Value Using Reduction
 Modifying and Updating a Collection
 List, Walk, and Search a Tree

Structure
 Flatten a Stream Using flatMap

mailto:info@nhaustralia.com.au

COURSE OUTLINE
IT TRAINING

 1300 796 006  info@nhaustralia.com.au  www.nhaustralia.com.au

MODULE 18: JUnit

 What is JUnit?
 Why JUnit?
 The xUnit Philosophy
 Test-Driven Design
 A JUnit Test
 Running the Tests
 Swing-based Test Runner
 Text-based Test Runner
 JUnit Basics
 assertTrue
 assertEquals
 assertSame
 assertNull
 The Failure Message
 The Test Class
 The Test Method
 The Test Suite
 JUnit with Annotations
 JUnit 4 Test Suite
 JUnit Design
 Testing Strategies
 Specific Techniques
 Testing Simple Java classes
 Testing with Databases
 Testing Web Applications
 Testing Java EE Web Applications
 JUnit with Ant
 Summary
 JUnit with Eclipse
 Create a Test Case
 Test Case "Stubs"
 Running Tests
 Eclipse Test Runner Icons
 Rerun an Individual Test
 Failure Trace
 Debug with JUnit
 Test Suite Wizard

MODULE 19: Mockito

 The Problem
 Old Solutions
 Bad Solutions?
 What's the other choice?
 Choices
 Mocking stubs
 Mocking Mocks
 Mostly Done
 Other Features
 Spy
 Annotations
 Summary

MODULE 20: Summary of
Recent Java Changes

 Java 7 – Major New Features
 Java 7 – Generic Diamond Operator
 Java 7 – Catching Multiple Exceptions
 Java 7 – Rethrowing Exceptions
 Java 7 – try-with-resources Statement
 Java 7 – Suppressed Exceptions in try-

with-resources
 Java 7 – Strings in switch Statement
 Java 7 – Changes in Numeric Literals
 Java 7 – Fork & Join Parallel Processing
 Java 7 – NIO.2 File Systems
 Java 8 – Major New Features
 Java 8 – Lambda Expressions
 Java 8 – Default Methods
 Java 8 – Collections Stream API
 Java 8 – Date & Time API
 Java 8 – Concurrency Changes
 Java 8 – Nashorn JavaScript Engine
 Java 8 – Repeating Annotations
 Java 8 – Type Annotations
 Java 8 – Security Changes
 Java 8 – HotSpot JRE Changes
 Summary

MODULE 21: Appendix A.
Parsing XML with SAX

 SAX
 How it Works
 Core SAX2 Handler Classes
 SAX2 DefaultHandler
 SAX Events
 Ignorable Whitespace
 Parsing a Document
 Using SAXParserFactory
 Parse XML with SAX – Details
 Define an Event Handler
 Create a SAXParserFactory instance
 Define an Event Handler –

startElement()
 Define an Event Handler – Element

Attributes
 Define an Event Handler – Get Number

of Attributes
 Define an Event Handler – Get Name

of Attributes
 Define an Event Handler – Get

Attribute Values
 Define an Event Handler – An Example
 Define an Event Handler – characters()
 Using characters()
 Define an Event Handler – Error

Handling
 Define an Event Handler –

ErrorHandler interface
 Parse XML Document
 Simple SAX Parser
 EntityResolver
 Locator
 Document Locator

MODULE 22: Appendix B.
Parsing XML With Dom

 DOM
 Limitations of SAX
 XML as an Object Model
 Nodes
 The Basic Node Types
 Less Common Node Types
 Node Interface
 Document Interface
 NodeList Interface
 Element Interface
 Attr Interface
 Text Interface
 DOM Parsing
 Parse XML with DOM – Steps
 Prepare DOM Parser Object
 Parse XML Document
 Parse Exceptions
 Example – SimpleDOMParser
 Writing DOM

mailto:info@nhaustralia.com.au

